Characterization of mouse orofacial pain and the effects of lesioning TRPV1-expressing neurons on operant behavior
نویسندگان
چکیده
BACKGROUND Rodent models of orofacial pain typically use methods adapted from manipulations to hind paw; however, limitations of these models include animal restraint and subjective assessments of behavior by the experimenter. In contrast to these methods, assessment of operant responses to painful stimuli has been shown to overcome these limitations and expand the breadth of interpretation of the behavioral responses. In the current study, we used an operant model based on a reward-conflict paradigm to assess nociceptive responses in three strains of mice (SKH1-Hrhr, C57BL/6J, TRPV1 knockout). We previously validated this operant model in rats and hypothesized in this study that wild-type mice would demonstrate a similar thermal stimulus-dependent response and similar operant pain behaviors. Additionally, we evaluated the effects on operant behaviors of mice manipulated genetically (e.g., TRPV1 k.o.) or pharmacologically with resiniferatoxin (RTX), a lesioning agent for TRPV1-expressing neurons. During the reward-conflict task, mice accessed a sweetened milk reward solution by voluntarily position their face against a neutral or heated thermode (37-55 degrees C). RESULTS As the temperature of the thermal stimulus became noxiously hot, reward licking events in SKH1-Hrhr and C57BL/6J mice declined while licking events in TRPV1 k.o. mice were insensitive to noxious heat within the activation range of TRPV1 (37-52 degrees C). All three strains displayed nocifensive behaviors at 55 degrees C, as indicated by a significant decrease in reward licking events. Induction of neurogenic inflammation by topical application of capsaicin reduced licking events in SKH1-Hrhr mice, and morphine rescued this response. Again, these results parallel what we previously documented using rats in this operant system. Following intracisternal treatment with RTX, C57BL/6J mice demonstrated a block of noxious heat at both 48 and 55 degrees C. RTX-treated TRPV1 k.o. mice and all vehicle-treated mice displayed similar reward licking events as compared to the pre-treatment baseline levels. Both TRPV1 k.o. and RTX-treated C57BL/6J had complete abolishment of eye-wipe responses following corneal application of capsaicin. CONCLUSION Taken together, these results indicate the benefits of using the operant test system to investigate pain sensitivity in mice. This ability provides an essential step in the development of new treatments for patients suffering from orofacial pain disorders.
منابع مشابه
Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons.
We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse mod...
متن کاملResiniferatoxin: The Evolution of the “Molecular Scalpel” for Chronic Pain Relief
Control of chronic pain is frequently inadequate or can be associated with debilitating side effects. Ablation of certain nociceptive neurons, while retaining all other sensory modalities and motor function, represents a new therapeutic approach to controlling severe pain while avoiding off-target side effects. transient receptor potential cation channel subfamily V member 1 (TRPV1) is a calciu...
متن کاملBotulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons.
Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's centr...
متن کاملSelectively targeting pain in the trigeminal system.
We tested whether it is possible to selectively block pain signals in the orofacial area by delivering the permanently charged lidocaine derivative QX-314 into nociceptors via TPRV1 channels. We examined the effects of co-applied QX-314 and capsaicin on nociceptive, proprioceptive, and motor function in the rat trigeminal system. QX-314 alone failed to block voltage-gated sodium channel current...
متن کاملOrofacial neuropathic pain induced by oxaliplatin
Abstract Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Pain
دوره 4 شماره
صفحات -
تاریخ انتشار 2008